
Tuskar Documentation
Release 2013.2.dev15

OpenStack Foundation

January 19, 2015

Contents

1 High-Level Overview 3
1.1 Related Projects . 3

2 Developer Information 5
2.1 Install and Contribute . 5
2.2 API version 2 . 10

3 Contact Us 13

i

ii

Tuskar Documentation, Release 2013.2.dev15

Tuskar is a management service for planning TripleO deployments.

Interested in seeing the full Tuskar and Tuskar UI setup? Watch the demo.

Contents 1

https://www.youtube.com/watch?v=--WWdJXmf8o

Tuskar Documentation, Release 2013.2.dev15

2 Contents

CHAPTER 1

High-Level Overview

TODO Add project overview

• TODO feature examples

• TODO link to high-level portion of FAQ

• Recommended reading

1.1 Related Projects

• tuskar-ui - tuskar-ui provides dashboard access to Tuskar functionality as a Horizon plugin. See the Tuskar UI
documentation

• python-tuskarclient - A Python client for the Tuskar API, python-tuskarclient is utilized by tuskar-ui.

3

http://git.openstack.org/cgit/openstack/tuskar-ui
http://tuskar-ui.readthedocs.org/en/latest/
http://tuskar-ui.readthedocs.org/en/latest/
http://git.openstack.org/cgit/openstack/python-tuskarclient

Tuskar Documentation, Release 2013.2.dev15

4 Chapter 1. High-Level Overview

CHAPTER 2

Developer Information

2.1 Install and Contribute

2.1.1 Developer Installation Guide

The Tuskar source code should be pulled directly from git.

git clone https://git.openstack.org/openstack/tuskar

Dependencies

Setting up a local environment for development can be done with tox.

install prerequisites

* Fedora/RHEL:
$ sudo yum install python-devel python-pip libxml2-devel \

libxslt-devel postgresql-devel mariadb-devel

* Ubuntu/Debian:
$ sudo apt-get install python-dev python-pip libxml2-dev \

libxslt-dev libpq-dev libmysqlclient-dev

Note: If you wish you run Tuskar against MySQL or PostgreSQL you will need also install and configure these at
this point. Otherwise you can run Tuskar with an sqlite database.

To run the Tuskar test suite you will also need to install Tox.

$ sudo pip install tox

Note: An issue with tox requires that you use a version <1.70 or >= 1.7.2.

Now create your virtualenv.

$ cd <your_src_dir>/tuskar
$ tox -e venv

Note: If pip install fails due to an outdated setuptools, you can try to update it first.

$ sudo pip install --upgrade setuptools

5

https://bugs.launchpad.net/openstack-ci/+bug/1274135

Tuskar Documentation, Release 2013.2.dev15

To run the test suite use the following command. This will run against Python 2.6, Python 2.7 and run the flake8 code
linting.

$ tox

Note: If you only have access to Python 2.6 or 2.7 locally pass in -e py26 or -e py27 respectively.

Configuration

Copy the sample configuration file:

$ cp etc/tuskar/tuskar.conf.sample etc/tuskar/tuskar.conf

We need to tell tuskar where to connect to database. Edit the config file in database section and change

#connection=<None>

to

connection=sqlite:///tuskar/tuskar.sqlite

Note: If you are using a different database backend, you will need to enter a SQLAlchemy compatible conection
string for this setting.

We need to initialise the database schema.

activate the virtualenv
$ source .tox/venv/bin/activate

if you delete tuskar.sqlite this will force creation of tables again - e.g.
if you added a new resource table definitions etc in an existing migration
file
$ tuskar-dbsync --config-file etc/tuskar/tuskar.conf

You can verify this was successful (in addition to seeing no error output) with.

$ sqlite3 tuskar/tuskar.sqlite .schema

Then, launch the app.

$ tuskar-api --config-file etc/tuskar/tuskar.conf

You can then verify that everything worked by running.

$ curl -v -X GET -H ’Accept: application/json’ http://0.0.0.0:8585/v2/plans/ | python -mjson.tool

This command should return JSON with an empty result set.

Running Tuskar API

Whenever you want to run the API again, just switch to the virtualenv and run tuskar-api command.

$ source .tox/venv/bin/activate
$ tuskar-api --config-file etc/tuskar/tuskar.conf

6 Chapter 2. Developer Information

https://flake8.readthedocs.org
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Tuskar Documentation, Release 2013.2.dev15

Loading Initial Roles

Tuskar needs to be provided with a set of roles that can be added to a deployment plan. The following steps will add
the roles from the TripleO Heat Templates repository.

$ git clone http://git.openstack.org/cgit/openstack/tripleo-heat-templates/
$ cd tripleo-heat-templates
$ tuskar-load-roles --config-file etc/tuskar/tuskar.conf \

-r compute.yaml \
-r controller.yaml

After this, if the Tuskar API isn’t running, start it with the above command and the following curl command should
show you the loaded roles.

$ curl -v -X GET -H ’Accept: application/json’ http://0.0.0.0:8585/v2/roles/ | python -mjson.tool

Keystone Configuration

By default, Tuskar is configured to skip authentication for REST API calls. Keystone authentication can be enabled
by making the appropriate changes to the tuskar.conf file as described in the keystone documentation

Contributing

For additional developer information, take a look at the contributing guide.

2.1.2 Contributing to Tuskar

Tuskar follows the OpenStack development processes for code and communication. The repository is hosted on
git.openstack.org, bugs and blueprints are on Launchpad and we use the openstack-dev mailing list (subject [tuskar])
and the #tripleo IRC channel for communication.

As Tuskar is under the TripleO umbrella of projects you will also want to look at the TripleO contributing guidelines.

Coding Standards

We comply with the OpenStack coding standards.

Be sure to familiarise yourself with OpenStack’s Gerrit Workflow.

Before submitting your code, please make sure you have completed the following checklist:

1. Update the API docs (if needed)

2. Update the tests (if needed)

Finding your way around

There are various pieces of the codebase that may not be immediately obvious to a newcomer to the project, so we
attempt to explain some of that in this section.

2.1. Install and Contribute 7

http://docs.openstack.org/developer/keystone/configuringservices.html
http://git.openstack.org/cgit/openstack/tuskar
http://git.openstack.org/cgit/openstack/tuskar
https://launchpad.net/tuskar
http://docs.openstack.org/developer/tripleo-incubator/CONTRIBUTING.html
http://docs.openstack.org/developer/hacking/
http://docs.openstack.org/infra/manual/developers.html#development-workflow

Tuskar Documentation, Release 2013.2.dev15

Where do the tuskar commands come from? (tuskar-api, tuskar-dbsync, etc) The project-specific commands
live in tuskar/cmd, and are implementations that use the oslo.config project as a base. They are generated and put into
your venv when you run ‘python setup.py develop’. Adding a new one consists of:

1. Creating a new file in tuskar/cmd

2. Adding the appropriate name and package reference to the entry_points section of setup.cfg

How do I add a new controller? Controllers are contained in tuskar/api/controllers/v2.py. To add a new controller,
you need to add an ‘HTTP Representation’ of whatever model you wish to expose with this controller. This is a simple
python object that extends Base, and describes the key and value types that the object will return. For example, say
there is a Foo model object you wish to return.

class Foo(Base):
id = int
name = wtypes.text
fred = Fred # Fred is another object defined in this file

Then add a controller for it (anywhere above the Controller class, which is the last in the file. For example:

class FoosController(rest.RestController):
@wsme_pecan.wsexpose([Foo])
def get_all(self)

result = []
"""Do some things to get your list of Foos"""
return result

Lastly, add a reference to the controller in the Controller class at the bottom of the file as so.

class Controller(object):
foos = FoosController()

The name you give the controller above will be how it is accessed by the client, so in the above case, you could get the
list of foos with.

curl http://0.0.0.0:8585/v1/foos

For doing something simple, like a poc controller that doesn’t return any objects, you can return plain text as so

class FarkleController(rest.RestController):
@wsme_pecan.wsexpose(None, wtypes.text)
def get_all(self):

return "Hi, I am farkle!"

Where are my changes to the app? You may make a change to, say, a controller, and wonder why your change
does not seem to happen when you call your curl command on that resource. This is because, at least at the current
time, you must ctrl+c to kill the tuskar-api server, and then restart it again to pick up your changes.

How do I create a new model? Models live in tuskar/db/sqlalchemy/. There are two files here of relevance for
describing the model (we will get to defining the table in the next section), api.py and models.py. The models.py file
contains the definition of the columns to expose to the client for the model objects, as well as a mapping of the object
in this file to the tablename define in the migration (below). In api.py, we have utility methods, as well as validation
rules and other custom methods for interacting with the models.

8 Chapter 2. Developer Information

Tuskar Documentation, Release 2013.2.dev15

How do I define the table for my new model? This is described in a migration file, located in
tuskar/db/sqlalchemy/migrate_repo/versions/. Each new table or change to an existing table should get a new file
here with a descriptive name, starting with a 3 digit number. Each new file should increment the number to avoid colli-
sions. The primary part of this file is the definition of your table, which s done via a Table object, and you describe the
columns, using, surprisingly enough, a Column object. There are upgrade nd downgrade methods in these migrations
to describe what to do for creating a given set of tables, as well as dropping them, or rolling back to what was done
before the upgrade.

Writing and Running tests

We use testtools for our unit tests, and mox for mock objects.

You can run tests using Tox:

$ tox

This will run tests under Python 2.6, 2.7 and verify PEP 8 compliance. The identical test suite is run by OpenStack’s
Jenkins whenever you send a patch.

2.1.3 Recommended Reading

Tuskar Design Discussions

• Juno Planning

• Template storage planning

• TripleO Specifications

Relevant OpenStack Projects

• TripleO

• Heat

• oslo.db

• oslo.config

• hacking This enforces openstack community coding style guidelines

General Python/Frameworks

• dive into python

• pecan

• sqlalchemy

• style guide This guide is the baseline for ‘hacking’ above.

2.1. Install and Contribute 9

http://www.python.org/dev/peps/pep-0008/
https://wiki.openstack.org/wiki/TripleO/TuskarJunoPlanning
https://wiki.openstack.org/wiki/TripleO/TuskarJunoPlanning/TemplateBackend
http://git.openstack.org/cgit/openstack/tripleo-specs/
http://docs.openstack.org/developer/tripleo-incubator/
http://docs.openstack.org/developer/heat/
http://docs.openstack.org/developer/oslo.db/
http://docs.openstack.org/developer/oslo.config
http://docs.openstack.org/developer/hacking
http://www.diveintopython.net
http://pecan.readthedocs.org/en/latest/
http://docs.sqlalchemy.org/en/rel_0_8/
http://www.python.org/dev/peps/pep-0008/

Tuskar Documentation, Release 2013.2.dev15

2.2 API version 2

2.2.1 cURL Commands for API ver. 2

Resources

• Plan

• Role

Plan

Example of JSON Representation of Plan

{
"created_at": "2014-09-26T20:23:14.222815",
"description": "Development testing cloud",
"name": "dev-cloud",
"parameters":
[
{

"default": "guest",
"description": "The password for RabbitMQ",
"hidden": true,
"label": null,
"name": "compute-1::RabbitPassword",
"value": "secret-password"

}
],
"roles":
[
{

"description": "OpenStack hypervisor node. Can be wrapped in a ResourceGroup for scaling.\n",
"name": "compute",
"uuid": "b7b1583c-5c80-481f-a25b-708ed4a39734",
"version": 1

}
],
"updated_at": null,
"uuid": "53268a27-afc8-4b21-839f-90227dd7a001"

}

List All Plans

curl -v -X GET -H ’Content-Type: application/json’ -H ’Accept: application/json’ http://0.0.0.0:8585/v2/plans/

Retrieve a Single Plan

curl -v -X GET -H ’Content-Type: application/json’ -H ’Accept: application/json’ http://0.0.0.0:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001

10 Chapter 2. Developer Information

Tuskar Documentation, Release 2013.2.dev15

Create a New Plan

curl -v -X POST -H ’Content-Type: application/json’ -H ’Accept: application/json’ -d ’
{
"name": "dev-cloud",
"description": "Development testing cloud",

}
’ http://0.0.0.0:8585/v2/plans

This command will create new Plan without any Roles associated with it. To assign a Role to Plan see How to Add a
Role to a Plan.

Delete an Existing Plan

curl -v -X DELETE http://localhost:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001

Changing a Plan’s Configuration Values

curl -v -X PATCH -H ’Content-Type: application/json’ -H ’Accept: application/json’ -d ’
[

{
"name" : "database_host",
"value" : "10.11.12.13"

},
{
"name" : "database_password",
"value" : "secret"

}
]
’ http://0.0.0.0:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001

You can change only existing parameters in Plan.

Retrieve a Plan’s Template Files

curl -v -X GET -H ’Content-Type: application/json’ -H ’Accept: application/json’ http://0.0.0.0:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001/templates

Example of JSON representation:

{
"environment.yaml" : "... content of template file ...",
"plan.yaml" : "... content of template file ...",
"provider-compute-1.yaml" : "... content of template file ..."

}

back to top

2.2. API version 2 11

Tuskar Documentation, Release 2013.2.dev15

Role

Example of JSON Representation of Role

{
"description": "OpenStack hypervisor node. Can be wrapped in a ResourceGroup for scaling.\n",
"name": "compute",
"uuid": "b7b1583c-5c80-481f-a25b-708ed4a39734",
"version": 1

}

Retrieving Possible Roles

curl -v -X GET -H ’Content-Type: application/json’ -H ’Accept: application/json’ http://0.0.0.0:8585/v2/roles/

Adding a Role to a Plan

curl -v -X POST -H ’Content-Type: application/json’ -H ’Accept: application/json’ -d ’
{
"uuid": "b7b1583c-5c80-481f-a25b-708ed4a39734"

}
’ http://0.0.0.0:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001

Removing a Role from a Plan

curl -v -X DELETE http://localhost:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001/roles/b7b1583c-5c80-481f-a25b-708ed4a39734

back to top

12 Chapter 2. Developer Information

CHAPTER 3

Contact Us

Join us on IRC (Internet Relay Chat):

Network: Freenode (irc.freenode.net/tuskar)
Channel: #tripleo and #tuskar

13

	High-Level Overview
	Related Projects

	Developer Information
	Install and Contribute
	API version 2

	Contact Us

