

 Navigation

 	
 index

 	
 next |

 	Tuskar 2013.2.dev15 documentation

Tuskar

Tuskar is a management service for planning TripleO deployments.

Interested in seeing the full Tuskar and Tuskar UI setup? Watch
the demo. [https://www.youtube.com/watch?v=–WWdJXmf8o]

High-Level Overview

TODO Add project overview

	TODO feature examples

	TODO link to high-level portion of FAQ

	Recommended reading

Related Projects

	tuskar-ui [http://git.openstack.org/cgit/openstack/tuskar-ui] - tuskar-ui provides dashboard access to Tuskar
functionality as a Horizon plugin. See the Tuskar UI
documentation [http://tuskar-ui.readthedocs.org/en/latest/]

	python-tuskarclient [http://git.openstack.org/cgit/openstack/python-tuskarclient] - A Python client for the Tuskar API,
python-tuskarclient is
utilized by tuskar-ui.

Developer Information

Install and Contribute

	Developer Installation Guide
	Dependencies

	Configuration

	Running Tuskar API

	Loading Initial Roles

	Keystone Configuration

	Contributing

	Contributing to Tuskar
	Coding Standards

	Recommended Reading
	Tuskar Design Discussions

	Relevant OpenStack Projects

	General Python/Frameworks

API version 2

	cURL Commands for API ver. 2
	Resources

	Plan

	Role

Contact Us

Join us on IRC (Internet Relay Chat):

Network: Freenode (irc.freenode.net/tuskar)
Channel: #tripleo and #tuskar

 Copyright OpenStack Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tuskar 2013.2.dev15 documentation

Developer Installation Guide

The Tuskar source code should be pulled directly from git.

git clone https://git.openstack.org/openstack/tuskar

Dependencies

Setting up a local environment for development can be done with
tox.

install prerequisites
* Fedora/RHEL:
$ sudo yum install python-devel python-pip libxml2-devel \
 libxslt-devel postgresql-devel mariadb-devel

* Ubuntu/Debian:
$ sudo apt-get install python-dev python-pip libxml2-dev \
 libxslt-dev libpq-dev libmysqlclient-dev

Note

If you wish you run Tuskar against MySQL or PostgreSQL you
will need also install and configure these at this point.
Otherwise you can run Tuskar with an sqlite database.

To run the Tuskar test suite you will also need to install Tox.

$ sudo pip install tox

Note

An issue with tox [https://bugs.launchpad.net/openstack-ci/+bug/1274135]
requires that you use a version <1.70 or >= 1.7.2.

Now create your virtualenv.

$ cd <your_src_dir>/tuskar
$ tox -e venv

Note

If pip install fails due to an outdated setuptools, you
can try to update it first.

$ sudo pip install --upgrade setuptools

To run the test suite use the following command. This will run
against Python 2.6, Python 2.7 and run the flake8 [https://flake8.readthedocs.org] code linting.

$ tox

Note

If you only have access to Python 2.6 or 2.7 locally pass
in -e py26 or -e py27 respectively.

Configuration

Copy the sample configuration file:

$ cp etc/tuskar/tuskar.conf.sample etc/tuskar/tuskar.conf

We need to tell tuskar where to connect to database. Edit the
config file in database section and change

#connection=<None>

to

connection=sqlite:///tuskar/tuskar.sqlite

Note

If you are using a different database backend, you will need
to enter a SQLAlchemy compatible conection string [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls] for this setting.

We need to initialise the database schema.

activate the virtualenv
$ source .tox/venv/bin/activate

if you delete tuskar.sqlite this will force creation of tables again - e.g.
if you added a new resource table definitions etc in an existing migration
file
$ tuskar-dbsync --config-file etc/tuskar/tuskar.conf

You can verify this was successful (in addition to seeing no
error output) with.

$ sqlite3 tuskar/tuskar.sqlite .schema

Then, launch the app.

$ tuskar-api --config-file etc/tuskar/tuskar.conf

You can then verify that everything worked by running.

$ curl -v -X GET -H 'Accept: application/json' http://0.0.0.0:8585/v2/plans/ | python -mjson.tool

This command should return JSON with an empty result set.

Running Tuskar API

Whenever you want to run the API again, just switch to the
virtualenv and run tuskar-api command.

$ source .tox/venv/bin/activate
$ tuskar-api --config-file etc/tuskar/tuskar.conf

Loading Initial Roles

Tuskar needs to be provided with a set of roles that can be added
to a deployment plan. The following steps will add the roles from
the TripleO Heat Templates repository.

$ git clone http://git.openstack.org/cgit/openstack/tripleo-heat-templates/
$ cd tripleo-heat-templates
$ tuskar-load-roles --config-file etc/tuskar/tuskar.conf \
 -r compute.yaml \
 -r controller.yaml

After this, if the Tuskar API isn’t running, start it with the
above command and the following curl command should show you the
loaded roles.

$ curl -v -X GET -H 'Accept: application/json' http://0.0.0.0:8585/v2/roles/ | python -mjson.tool

Keystone Configuration

By default, Tuskar is configured to skip authentication for REST
API calls. Keystone authentication can be enabled by making the
appropriate changes to the tuskar.conf file as described in
the keystone documentation [http://docs.openstack.org/developer/keystone/configuringservices.html]

Contributing

For additional developer information, take a look at
the contributing guide.

 Copyright OpenStack Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tuskar 2013.2.dev15 documentation

Contributing to Tuskar

Tuskar follows the OpenStack development processes for code and
communication. The repository is hosted on git.openstack.org [http://git.openstack.org/cgit/openstack/tuskar], bugs and
blueprints are on Launchpad [https://launchpad.net/tuskar] and
we use the openstack-dev mailing list (subject [tuskar]) and
the #tripleo IRC channel for communication.

As Tuskar is under the TripleO umbrella of projects you will also
want to look at the TripleO contributing guidelines [http://docs.openstack.org/developer/tripleo-incubator/CONTRIBUTING.html].

Coding Standards

We comply with the OpenStack coding standards [http://docs.openstack.org/developer/hacking/].

Be sure to familiarise yourself with OpenStack’s Gerrit Workflow [http://docs.openstack.org/infra/manual/developers.html#development-workflow].

Before submitting your code, please make sure you have completed
the following checklist:

	Update the API docs (if needed)

	Update the tests (if needed)

Finding your way around

There are various pieces of the codebase that may not be
immediately obvious to a newcomer to the project, so we attempt
to explain some of that in this section.

Where do the tuskar commands come from? (tuskar-api, tuskar-dbsync, etc)

The project-specific commands live in tuskar/cmd, and are
implementations that use the oslo.config project as a base. They
are generated and put into your venv when you run ‘python
setup.py develop’. Adding a new one consists of:

	Creating a new file in tuskar/cmd

	Adding the appropriate name and package reference to the
entry_points section of setup.cfg

How do I add a new controller?

Controllers are contained in tuskar/api/controllers/v2.py. To add
a new controller, you need to add an ‘HTTP Representation’ of
whatever model you wish to expose with this controller. This is a
simple python object that extends Base, and describes the key and
value types that the object will return. For example, say there
is a Foo model object you wish to return.

class Foo(Base):
 id = int
 name = wtypes.text
 fred = Fred # Fred is another object defined in this file

Then add a controller for it (anywhere above the Controller class,
which is the last in the file. For example:

class FoosController(rest.RestController):
 @wsme_pecan.wsexpose([Foo])
 def get_all(self)
 result = []
 """Do some things to get your list of Foos"""
 return result

Lastly, add a reference to the controller in the Controller class at
the bottom of the file as so.

class Controller(object):
 foos = FoosController()

The name you give the controller above will be how it is accessed by
the client, so in the above case, you could get the list of foos
with.

curl http://0.0.0.0:8585/v1/foos

For doing something simple, like a poc controller that doesn’t
return any objects, you can return plain text as so

class FarkleController(rest.RestController):
 @wsme_pecan.wsexpose(None, wtypes.text)
 def get_all(self):
 return "Hi, I am farkle!"

Where are my changes to the app?

You may make a change to, say, a controller, and wonder why your
change does not seem to happen when you call your curl command on
that resource. This is because, at least at the current time, you
must ctrl+c to kill the tuskar-api server, and then restart it
again to pick up your changes.

How do I create a new model?

Models live in tuskar/db/sqlalchemy/. There are two files here of
relevance for describing the model (we will get to defining the
table in the next section), api.py and models.py. The models.py
file contains the definition of the columns to expose to the
client for the model objects, as well as a mapping of the object
in this file to the tablename define in the migration (below). In
api.py, we have utility methods, as well as validation rules and
other custom methods for interacting with the models.

How do I define the table for my new model?

This is described in a migration file, located in
tuskar/db/sqlalchemy/migrate_repo/versions/. Each new table or
change to an existing table should get a new file here with a
descriptive name, starting with a 3 digit number. Each new file
should increment the number to avoid collisions. The primary part of
this file is the definition of your table, which s done via a Table
object, and you describe the columns, using, surprisingly enough, a
Column object. There are upgrade nd downgrade methods in these
migrations to describe what to do for creating a given set of
tables, as well as dropping them, or rolling back to what was done
before the upgrade.

Writing and Running tests

We use testtools for our unit tests, and mox for mock objects.

You can run tests using Tox:

$ tox

This will run tests under Python 2.6, 2.7 and verify PEP 8 [http://www.python.org/dev/peps/pep-0008/] compliance. The identical test
suite is run by OpenStack’s Jenkins whenever you send a patch.

 Copyright OpenStack Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tuskar 2013.2.dev15 documentation

Recommended Reading

Tuskar Design Discussions

	Juno Planning [https://wiki.openstack.org/wiki/TripleO/TuskarJunoPlanning]

	Template storage planning [https://wiki.openstack.org/wiki/TripleO/TuskarJunoPlanning/TemplateBackend]

	TripleO Specifications [http://git.openstack.org/cgit/openstack/tripleo-specs/]

Relevant OpenStack Projects

	TripleO [http://docs.openstack.org/developer/tripleo-incubator/]

	Heat [http://docs.openstack.org/developer/heat/]

	oslo.db [http://docs.openstack.org/developer/oslo.db/]

	oslo.config [http://docs.openstack.org/developer/oslo.config]

	hacking [http://docs.openstack.org/developer/hacking] This enforces
openstack community coding style guidelines

General Python/Frameworks

	dive into python [http://www.diveintopython.net]

	pecan [http://pecan.readthedocs.org/en/latest/]

	sqlalchemy [http://docs.sqlalchemy.org/en/rel_0_8/]

	style guide [http://www.python.org/dev/peps/pep-0008/] This guide
is the baseline for ‘hacking’ above.

 Copyright OpenStack Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Tuskar 2013.2.dev15 documentation

cURL Commands for API ver. 2

Resources

	Plan

	Role

Plan

Example of JSON Representation of Plan

{
 "created_at": "2014-09-26T20:23:14.222815",
 "description": "Development testing cloud",
 "name": "dev-cloud",
 "parameters":
 [
 {
 "default": "guest",
 "description": "The password for RabbitMQ",
 "hidden": true,
 "label": null,
 "name": "compute-1::RabbitPassword",
 "value": "secret-password"
 }
],
 "roles":
 [
 {
 "description": "OpenStack hypervisor node. Can be wrapped in a ResourceGroup for scaling.\n",
 "name": "compute",
 "uuid": "b7b1583c-5c80-481f-a25b-708ed4a39734",
 "version": 1
 }
],
 "updated_at": null,
 "uuid": "53268a27-afc8-4b21-839f-90227dd7a001"
}

List All Plans

curl -v -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' http://0.0.0.0:8585/v2/plans/

Retrieve a Single Plan

curl -v -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' http://0.0.0.0:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001

Create a New Plan

curl -v -X POST -H 'Content-Type: application/json' -H 'Accept: application/json' -d '
 {
 "name": "dev-cloud",
 "description": "Development testing cloud",
 }
 ' http://0.0.0.0:8585/v2/plans

This command will create new Plan without any Roles associated with it.
To assign a Role to Plan see How to Add a Role to a Plan.

Delete an Existing Plan

curl -v -X DELETE http://localhost:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001

Changing a Plan’s Configuration Values

curl -v -X PATCH -H 'Content-Type: application/json' -H 'Accept: application/json' -d '
[
 {
 "name" : "database_host",
 "value" : "10.11.12.13"
 },
 {
 "name" : "database_password",
 "value" : "secret"
 }
]
' http://0.0.0.0:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001

You can change only existing parameters in Plan.

Retrieve a Plan’s Template Files

curl -v -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' http://0.0.0.0:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001/templates

Example of JSON representation:

{
 "environment.yaml" : "... content of template file ...",
 "plan.yaml" : "... content of template file ...",
 "provider-compute-1.yaml" : "... content of template file ..."
}

back to top

Role

Example of JSON Representation of Role

{
 "description": "OpenStack hypervisor node. Can be wrapped in a ResourceGroup for scaling.\n",
 "name": "compute",
 "uuid": "b7b1583c-5c80-481f-a25b-708ed4a39734",
 "version": 1
}

Retrieving Possible Roles

curl -v -X GET -H 'Content-Type: application/json' -H 'Accept: application/json' http://0.0.0.0:8585/v2/roles/

Adding a Role to a Plan

curl -v -X POST -H 'Content-Type: application/json' -H 'Accept: application/json' -d '
 {
 "uuid": "b7b1583c-5c80-481f-a25b-708ed4a39734"
 }
 ' http://0.0.0.0:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001

Removing a Role from a Plan

curl -v -X DELETE http://localhost:8585/v2/plans/53268a27-afc8-4b21-839f-90227dd7a001/roles/b7b1583c-5c80-481f-a25b-708ed4a39734

back to top

 Copyright OpenStack Foundation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Tuskar 2013.2.dev15 documentation

Index

 Copyright OpenStack Foundation.
 Created using Sphinx 1.2.2.

 _static/openstack_logo.png
n openstack

_static/comment.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/plus.png

_static/comment-bright.png

_static/header_bg.jpg

_static/up-pressed.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Tuskar 2013.2.dev15 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright OpenStack Foundation.
 Created using Sphinx 1.2.2.

_static/file.png

_static/ajax-loader.gif

_static/header-line.gif

_static/down.png

